Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(1*E*,1'*E*)-4,4'-[1,1'-(Hydrazine-1,2-diyl-idene)bis(ethan-1-yl-1-ylidene)]diphenol dihydrate

Suchada Chantrapromma, ** Patcharaporn Jansrisewangwong, *b Kullapa Chanawanno a and Hoong-Kun Funcs

^aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ^bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: suchada.c@psu.ac.th

Received 9 July 2011; accepted 22 July 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(C-C) = 0.002 \text{ Å}$; R factor = 0.046; wR factor = 0.125; data-to-parameter ratio = 21.1.

The asymmetric unit of the title compound, $C_{16}H_{16}N_2O_2$ - $2H_2O$, contains one half-molecule of diphenol and one water molecule. The complete diphenol molecule is generated by a crystallographic inversion centre. In the molecule, the central $C_{\text{methyl}}-C$ —N—C- C_{methyl} plane makes a dihedral angle of 8.88 (6)° with its adjacent benzene ring. In the crystal, the components are linked by $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonds into a three-dimensional network. The crystal structure is further stabilized by a weak $C-H\cdots \pi$ interaction.

Related literature

For bond-length data, see: Allen *et al.* (1987). For related structures, see: Chantrapromma *et al.* (2010); Fun *et al.* (2010); Jansrisewangwong *et al.* (2010). For background to and the biological activity of hydrozones, see: Bendre *et al.* (1998); ElTabl *et al.* (2008); Kitaev *et al.* (1970); Qin *et al.* (2009); Ramamohan *et al.* (1995); Rollas & Küçükgüzel (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

$C_{16}H_{16}N_2O_2\cdot 2H_2O$	$V = 734.62 (2) \text{ Å}^3$
$M_r = 304.34$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.8522 (1) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 5.5151 (1) Å	T = 100 K
c = 17.8918 (3) Å	$0.35 \times 0.26 \times 0.22 \text{ mm}$
$\beta = 108.536 \ (1)^{\circ}$	

Data collection

 $\begin{array}{lll} \mbox{Bruker APEXII CCD area-detector} & 8010 \mbox{ measured reflections} \\ \mbox{diffractometer} & 2129 \mbox{ independent reflections} \\ \mbox{Absorption correction: multi-scan} & 1903 \mbox{ reflections with } I > 2\sigma(I) \\ \mbox{} (SADABS; \mbox{ Bruker}, 2005) & R_{\rm int} = 0.021 \\ \mbox{} T_{\rm min} = 0.966, \ T_{\rm max} = 0.979 \\ \end{array}$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.046 & 101 \ {\rm parameters} \\ WR(F^2) = 0.125 & {\rm H-atom\ parameters\ constrained} \\ S = 1.06 & \Delta\rho_{\rm max} = 0.39\ {\rm e\ \mathring{A}^{-3}} \\ 2129\ {\rm reflections} & \Delta\rho_{\rm min} = -0.34\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$O1-H1O1\cdots O1W^{i}$	0.83	1.86	2.6747 (12)	171
$O1W-H1W\cdots O1^{ii}$	0.86	2.07	2.8429 (12)	149
$O1W-H2W\cdots N1^{iii}$	0.86	2.17	3.0132 (14)	166
$C5-H5A\cdots Cg1^{iv}$	0.93	2.80	3.5046 (12)	134
Es-Hiszi Cg1			. ,	

Symmetry codes: (i) $x+1, -y+\frac{1}{2}, z+\frac{1}{2};$ (ii) $-x+1, y-\frac{1}{2}, -z+\frac{3}{2};$ (iii) -x+1, -y+1, -z+1; (iv) $-x+2, y-\frac{1}{2}, -z+\frac{3}{2}.$

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

PJ thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, and the Graduate School, Prince of Songkla University, for financial support. The authors also thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2750).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bendre, R., Murugkar, A., Padhye, S., Kulkarni, P. & Karve, M. (1998). *Met. Based Drugs* 5, 59-66

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2010). *Acta Cryst*. E**66**, o2994–o2995.

[‡] Thomson Reuters ResearcherID: A-5085-2009.

[§] Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

organic compounds

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

El-Tabl, A. S., El-Saied, F. A., Plass, W. & Al-Hakimi, A. N. (2008). Spectrochim. Acta Part A, 71, 90–99.

Fun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). *Acta Cryst.* E66, o2401–o2402.

Jansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). *Acta Cryst.* E66, o2170.

Kitaev, Y. P., Buzykin, B. I. & Troepolskaya, T. V. (1970). Russ. Chem. Rev. 39, 441–456.

Qin, D.-D., Yang, Z.-Y. & Qi, G.-F. (2009). Spectrochim. Acta Part A, 74, 415–420.

Ramamohan, L., Shikkargol, R. K., Angadi, S. D. & Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86.

Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910–1939.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary m	aterials	

Acta Cryst. (2011). E67, o2221-o2222 [doi:10.1107/S1600536811029679]

(1E,1'E)-4,4'-[1,1'-(Hydrazine-1,2-diylidene)bis(ethan-1-yl-1-ylidene)]diphenol dihydrate

S. Chantrapromma, P. Jansrisewangwong, K. Chanawanno and H.-K. Fun

Comment

Hydrazones have been reported to possess fluorescence properties (Qin *et al.*, 2009) and various biological activities such as to be used as insecticides, antitumor agents and antioxidants (Kitaev *et al.*, 1970), as well as antimicrobial (Ramamohan *et al.*, 1995) and antiviral properties (El-Tabl *et al.*, 2008; Rollas & Küçükgüzel, 2007) and tyrosinase inhibitory activity (Bendre *et al.*, 1998). With our on-going research on structural studies and properties of hydrazones (Chantrapromma *et al.*, 2010; Fun *et al.*, 2010; Jansrisewangwong *et al.*, 2010), the title compound (I) was synthesized. Our results show that (I) was inactive for tyrosinase inhibitory activity. Herein we report the synthesis and crystal structure of the title compound (I).

The asymmetric unit of (I) (Fig. 1), $C_{16}H_{16}N_2O_2.2H_2O$, contains one half-molecule of diphenol and the complete molecule is generated by a crystallographic inversion centre 1 - x, 1 - y, 1 - z. The molecule of (I) exists in an E,E configuration with respect to the two C=N double bonds [1.2985 (13) Å] and the torsion angle N1A-N1-C7-C1 = 177.76 (10)°. The diethylidenehydrazine moiety (C7/C8/N1/N1A/C7A/C8A) is planar with an r.m.s deviation of 0.0084 (1) Å. This C/C/N/N/C/C plane makes a dihedral angle of 8.88 (6)° with its both adjacent benzene rings. Each hydroxy group is co-planarly attached with the benzene ring with the r.m.s. of 0.0056 (1) Å for the seven non H atoms. The bond distances are of normal values (Allen *et al.*, 1987) and are comparable with related structures (Chantrapromma *et al.*, 2010; Fun *et al.*, 2010; Jansrisewangwong *et al.*, 2010).

In the crystal structure (Fig. 2), the molecules are linked into three dimensional network by O—H···N and O—H···O hydrogen bonds (Table 1). C—H··· π interaction was also also observed (Table 1).

Experimental

The title compound was synthesized by mixing a solution (1:2 molar ratio) of hydrazine hydrate (0.10 ml, 2 mmol) and 4-hydroxyacetophenone (0.54 g, 4 mmol) in ethanol (20 ml). The resulting solution was refluxed for 6 h, yielding the yellow solid. The resultant solid was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for *x*-ray structure determination were recrystalized from acetone by slow evaporation of the solvent at room temperature over several days, m.p. 377–379 K.

Refinement

The water hydrogen atoms were restrained to the ideal positions. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O—H) = 0.86 Å, and d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH₃ atoms. The $U_{\rm iso}$ values were constrained to be $1.5U_{\rm eq}$ of the carrier atom for methyl H atoms and $1.2U_{\rm eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.40 Å from H1W and the deepest hole is located at 0.35 Å from H1W.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Atoms with suffix A were generated by symmetry code 1 - x, 1 - y, 1 - z.

Fig. 2. The crystal packing of the title compound viewed approximately along the b axis, showing three dimensional network.

4-[(1E)-1-[(E)-2-[1-(4-hydroxyphenyl)ethylidene]hydrazin- 1-ylidene]ethyl]phenol

Crystal data

C₁₆H₁₆N₂O₂·2H₂O

 $M_r = 304.34$

Monoclinic, P2₁/c

Hall symbol: -P 2ybc a = 7.8522 (1) Å

b = 5.5151(1) Å

c = 17.8918 (3) Å $\beta = 108.536 (1)^{\circ}$

 $V = 734.62 (2) \text{ Å}^3$

Z = 2

F(000) = 324

 $D_{\rm x} = 1.376 \; {\rm Mg \; m}^{-3}$

Melting point = 377–379 K

Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Cell parameters from 2129 reflections

 $\theta = 2.4-30.0^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 100 K

Block, yellow

 $0.35\times0.26\times0.22~mm$

Data collection

Bruker APEXII CCD area-detector

diffractometer

Radiation source: sealed tube

graphite

 φ and ω scans

Absorption correction: multi-scan

(SADABS; Bruker, 2005)

 $T_{\min} = 0.966, T_{\max} = 0.979$

8010 measured reflections

2129 independent reflections

1903 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.021$

 $\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$

 $h = -10 \rightarrow 11$

 $k = -7 \rightarrow 7$

 $l = -24 \rightarrow 24$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.046$

 $wR(F^2) = 0.125$

S = 1.06

Primary atom site location: structure-invariant direct

methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.061P)^2 + 0.4114P]$

where $P = (F_0^2 + 2F_c^2)/3$

2129 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
101 parameters	$\Delta \rho_{max} = 0.39 \text{ e Å}^{-3}$
0 restraints	$\Delta \rho_{\text{min}} = -0.34 \text{ e Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$
O1	0.97567 (10)	0.63439 (15)	0.90238 (4)	0.01443 (19)
H1O1	1.0145	0.4971	0.9166	0.022*
N1	0.55899 (11)	0.49760 (17)	0.53887 (5)	0.0144(2)
C1	0.64270 (13)	0.65293 (19)	0.66844 (6)	0.0106(2)
C2	0.63628 (14)	0.83658 (19)	0.72163 (6)	0.0131(2)
H2A	0.5566	0.9650	0.7045	0.016*
C3	0.74735 (14)	0.82980 (19)	0.79977 (6)	0.0137(2)
Н3А	0.7421	0.9534	0.8343	0.016*
C4	0.86615 (13)	0.63756 (19)	0.82596 (6)	0.0111 (2)
C5	0.87307 (13)	0.45094 (19)	0.77420 (6)	0.0126(2)
H5A	0.9515	0.3215	0.7918	0.015*
C6	0.76265 (13)	0.45958 (19)	0.69653 (6)	0.0123 (2)
H6A	0.7680	0.3350	0.6623	0.015*
C7	0.52532 (13)	0.65863 (19)	0.58524 (6)	0.0113 (2)
C8	0.37991 (14)	0.8466 (2)	0.56043 (6)	0.0160(2)
H8A	0.4326	1.0054	0.5696	0.024*
H8B	0.2989	0.8269	0.5904	0.024*
H8C	0.3152	0.8278	0.5054	0.024*
O1W	0.07930 (12)	0.31062 (17)	0.45773 (6)	0.0252(2)
H1W	0.0793	0.3113	0.5058	0.038*
H2W	0.1722	0.3860	0.4541	0.038*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0167 (4)	0.0153 (4)	0.0088(3)	0.0003(3)	0.0007(3)	0.0002(3)
N1	0.0136 (4)	0.0180 (5)	0.0093 (4)	0.0038(3)	0.0002(3)	-0.0019(3)

C1	0.0106 (4)	0.0118 (5)	0.0093 (4)	-0.0001 (3)	0.0029(3)	-0.0004 (3)
C2	0.0145 (4)	0.0122 (5)	0.0121 (4)	0.0025 (4)	0.0034 (4)	-0.0005 (3)
C3	0.0163 (5)	0.0125 (5)	0.0120 (4)	0.0007 (4)	0.0041 (4)	-0.0025 (3)
C4	0.0114 (4)	0.0131 (5)	0.0087 (4)	-0.0023(3)	0.0030(3)	-0.0001 (3)
C5	0.0132 (4)	0.0125 (5)	0.0116 (4)	0.0026(3)	0.0033(3)	0.0004(3)
C6	0.0141 (4)	0.0121 (5)	0.0106 (4)	0.0013 (3)	0.0039(3)	-0.0017 (3)
C7	0.0103 (4)	0.0131 (5)	0.0102 (4)	0.0005(3)	0.0028(3)	0.0006(3)
C8	0.0164 (5)	0.0166 (5)	0.0128 (5)	0.0059 (4)	0.0016 (4)	-0.0010 (4)
O1W	0.0194 (4)	0.0227 (5)	0.0337 (5)	-0.0016(3)	0.0089 (4)	0.0060 (4)
Geometric paran	neters (Å, °)					
O1—C4		1.3644 (11)	C4-	-C5	1.3	971 (14)
O1—H1O1		0.8256	C5-	-C6	1.3	854 (13)
N1—C7		1.2985 (13)	C5-	–H5A	0.9	300
N1—N1 ⁱ		1.4050 (16)	C6-	–H6A	0.9	300
C1—C2		1.4016 (14)		-C8		5010 (14)
C1—C6		1.4056 (14)		–H8A		600
C1—C7		1.4814 (13)		–H8B		600
C2—C3		1.3934 (13)		-H8C		600
C2—H2A		0.9300		V—H1W	0.8598	
C3—C4		1.3913 (14)		V—H2W	0.8601	
C3—H3A		0.9300	011	V 112 VV	0.0	.001
C4—O1—H1O1		111.9	C6	C5 U5 A	12	0.1
			C6—C5—H5A			0.1
C7—N1—N1 ⁱ		114.55 (10)		C4—C5—H5A		
C2—C1—C6		118.04 (9)	C5—C6—C1			1.28 (9)
C2—C1—C7		121.45 (9)	C5—C6—H6A			9.4
C6—C1—C7		120.50 (9)		C1—C6—H6A		9.4
C3—C2—C1		121.04 (9)		N1—C7—C1		5.07 (9)
C3—C2—H2A		119.5		N1—C7—C8		5.01 (9)
C1—C2—H2A		119.5		-C7C8	118.92 (9)	
C4—C3—C2		119.82 (9)		-C8—H8A	109.5	
C4—C3—H3A		120.1		-C8—H8B	109.5	
C2—C3—H3A		120.1		A—C8—H8B	109.5	
O1—C4—C3		119.26 (9)		-C8—H8C	109.5 109.5	
	01—C4—C5 120.65 (9) H8A—C8—H8C					
C3—C4—C5		120.09 (9)		3—C8—H8C		9.5
C6—C5—C4		119.72 (9)		V—O1W—H2W	110	
C6—C1—C2—C		0.95 (16)		C2—C1—C6—C5		.70 (15)
C7—C1—C2—C	3	-179.93 (9)	C7-	C7—C1—C6—C5		79.83 (9)
C1—C2—C3—C	4	-0.37 (16)	N1 ⁱ -	—N1—C7—C1	177.76 (10)	
C2—C3—C4—O	1	179.26 (9)	N1 ⁱ -	N1 ⁱ —N1—C7—C8		.78 (17)
C2—C3—C4—C	5	-0.48 (16)	C2-	-C1C7N1	17	1.18 (10)
O1—C4—C5—C	6	-179.01 (9)	C6-	-C1C7N1	-9	.72 (14)
C3—C4—C5—C	6	0.72 (15)	C2-	-C1C7C8	-8	.31 (15)
C4—C5—C6—C	C5—C6—C1		0.78 (10)			
Symmetry codes:	(i) -x+1, -y+1,	-z+1.				

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O1—H1O1···O1W ⁱⁱ	0.83	1.86	2.6747 (12)	171
O1W—H1W···O1 ⁱⁱⁱ	0.86	2.07	2.8429 (12)	149
O1W—H2W···N1 ⁱ	0.86	2.17	3.0132 (14)	166
C5—H5A···Cg1 ^{iv}	0.93	2.80	3.5046 (12)	134

Symmetry codes: (ii) x+1, -y+1/2, z+1/2; (iii) -x+1, y-1/2, -z+3/2; (i) -x+1, -y+1, -z+1; (iv) -x+2, y-1/2, -z+3/2.

Fig. 1

Fig. 2

