Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(1E, 1'E)-4,4'-[1,1'-(Hydrazine-1,2-diyl-idene)bis(ethan-1-yl-1-ylidene)]diphenol dihydrate

Suchada Chantrapromma, ${ }^{\mathbf{a} * \ddagger \text { Patcharaporn }}$ Jansrisewangwong, ${ }^{\text {b }}$ Kullapa Chanawanno ${ }^{\text {a }}$ and Hoong-Kun Fun ${ }^{\text {c }} \S$

${ }^{\text {a }}$ Crystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ${ }^{\mathbf{b}}$ Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ${ }^{\mathrm{c}} \mathrm{X}$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: suchada.c@psu.ac.th

Received 9 July 2011; accepted 22 July 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.046 ; w R$ factor $=0.125$; data-to-parameter ratio $=21.1$.

The asymmetric unit of the title compound, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot-$ $2 \mathrm{H}_{2} \mathrm{O}$, contains one half-molecule of diphenol and one water molecule. The complete diphenol molecule is generated by a crystallographic inversion centre. In the molecule, the central $\mathrm{C}_{\text {methyl }}-\mathrm{C}=\mathrm{N}-\mathrm{N}=\mathrm{C}-\mathrm{C}_{\text {methyl }}$ plane makes a dihedral angle of $8.88(6)^{\circ}$ with its adjacent benzene ring. In the crystal, the components are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional network. The crystal structure is further stabilized by a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction.

Related literature

For bond-length data, see: Allen et al. (1987). For related structures, see: Chantrapromma et al. (2010); Fun et al. (2010); Jansrisewangwong et al. (2010). For background to and the biological activity of hydrozones, see: Bendre et al. (1998); ElTabl et al. (2008); Kitaev et al. (1970); Qin et al. (2009); Ramamohan et al. (1995); Rollas \& Küçükgüzel (2007). For the stability of the temperature controller used in the data collection, see: Cosier \& Glazer (1986).

[^0]
Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$V=734.62(2) \AA^{3}$
$M_{r}=304.34$
Monoclinic, $P 2_{1} / c$
$a=7.8522$ (1) A
$b=5.5151$ (1) \AA
$c=17.8918$ (3) \AA
$\beta=108.536$ (1) ${ }^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.966, T_{\text {max }}=0.979$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.125$
$S=1.06$
2129 reflections
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.35 \times 0.26 \times 0.22 \mathrm{~mm}$

8010 measured reflections 2129 independent reflections 1903 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

101 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.39 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 O 1 \cdots \mathrm{O} 1 W^{\text {i }}$	0.83	1.86	2.6747 (12)	171
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 1^{\text {ii }}$	0.86	2.07	2.8429 (12)	149
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{~N} 1^{\text {iii }}$	0.86	2.17	3.0132 (14)	166
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{Cg} 1^{\text {iv }}$	0.93	2.80	3.5046 (12)	134

Symmetry codes: (i) $x+1,-y+\frac{1}{2}, z+\frac{1}{2} ; \quad$ (ii) $\quad-x+1, y-\frac{1}{2},-z+\frac{3}{2} ; \quad$ (iii)
$-x+1,-y+1,-z+1$; (iv) $-x+2, y-\frac{1}{2},-z+\frac{3}{2}$.
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

PJ thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, and the Graduate School, Prince of Songkla University, for financial support. The authors also thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/ 811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2750).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bendre, R., Murugkar, A., Padhye, S., Kulkarni, P. \& Karve, M. (1998). Met. Based Drugs, 5, 59-66.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chantrapromma, S., Jansrisewangwong, P. \& Fun, H.-K. (2010). Acta Cryst. E66, o2994-o2995.

organic compounds

Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
El-Tabl, A. S., El-Saied, F. A., Plass, W. \& Al-Hakimi, A. N. (2008). Spectrochim. Acta Part A, 71, 90-99.
Fun, H.-K., Jansrisewangwong, P. \& Chantrapromma, S. (2010). Acta Cryst. E66, o2401-02402.
Jansrisewangwong, P., Chantrapromma, S. \& Fun, H.-K. (2010). Acta Cryst. E66, 02170.
Kitaev, Y. P., Buzykin, B. I. \& Troepolskaya, T. V. (1970). Russ. Chem. Rev. 39, 441-456.

Qin, D.-D., Yang, Z.-Y. \& Qi, G.-F. (2009). Spectrochim. Acta Part A, 74, 415420.

Ramamohan, L., Shikkargol, R. K., Angadi, S. D. \& Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86.
Rollas, S. \& Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910-1939.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

($\left.1 E, 1^{\prime} E\right)-4,4^{\prime}-\left[1,1^{\prime}\right.$ '-(Hydrazine-1,2-diylidene)bis(ethan-1-yl-1-ylidene)]diphenol dihydrate

S. Chantrapromma, P. Jansrisewangwong, K. Chanawanno and H.-K. Fun

Comment

Hydrazones have been reported to possess fluorescence properties (Qin et al., 2009) and various biological activities such as to be used as insecticides, antitumor agents and antioxidants (Kitaev et al., 1970), as well as antimicrobial (Ramamohan et al., 1995) and antiviral properties (El-Tabl et al., 2008; Rollas \& Küçükgüzel, 2007) and tyrosinase inhibitory activity (Bendre et al., 1998). With our on-going research on structural studies and properties of hydrazones (Chantrapromma et al., 2010; Fun et al., 2010; Jansrisewangwong et al., 2010), the title compound (I) was synthesized. Our results show that (I) was inactive for tyrosinase inhibitory activity. Herein we report the synthesis and crystal structure of the title compound (I).

The asymmetric unit of (I) (Fig. 1), $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} .2 \mathrm{H}_{2} \mathrm{O}$, contains one half-molecule of diphenol and the complete molecule is generated by a crystallographic inversion centre $1-x, 1-y, 1-z$. The molecule of (I) exists in an E, E configuration with respect to the two $\mathrm{C}=\mathrm{N}$ double bonds $\left[1.2985(13) \AA\right.$] and the torsion angle $\mathrm{N} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1=177.76(10)^{\circ}$. The diethylidenehydrazine moiety $(\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{N} 1 / \mathrm{N} 1 \mathrm{~A} / \mathrm{C} 7 \mathrm{~A} / \mathrm{C} 8 \mathrm{~A})$ is planar with an $r . m . s$ deviation of 0.0084 (1) \AA. This $\mathrm{C} / \mathrm{C} / \mathrm{N} /$ $\mathrm{N} / \mathrm{C} / \mathrm{C}$ plane makes a dihedral angle of $8.88(6)^{\circ}$ with its both adjacent benzene rings. Each hydroxy group is co-planarly attached with the benzene ring with the r.m.s. of 0.0056 (1) \AA for the seven non H atoms. The bond distances are of normal values (Allen et al., 1987) and are comparable with related structures (Chantrapromma et al., 2010; Fun et al., 2010; Jansrisewangwong et al., 2010).

In the crystal structure (Fig. 2), the molecules are linked into three dimensional network by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction was also also observed (Table 1).

Experimental

The title compound was synthesized by mixing a solution (1:2 molar ratio) of hydrazine hydrate ($0.10 \mathrm{ml}, 2 \mathrm{mmol}$) and 4-hydroxyacetophenone ($0.54 \mathrm{~g}, 4 \mathrm{mmol}$) in ethanol (20 ml). The resulting solution was refluxed for 6 h , yielding the yellow solid. The resultant solid was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from acetone by slow evaporation of the solvent at room temperature over several days, m.p. 377-379 K.

Refinement

The water hydrogen atoms were restrained to the ideal positions. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with $d(\mathrm{O}-\mathrm{H})=0.86 \AA$, and $d(\mathrm{C}-\mathrm{H})=0.93 \AA$ for aromatic and $0.96 \AA$ for CH_{3} atoms. The $U_{\text {iso }}$ values were constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for methyl H atoms and $1.2 U_{\text {eq }}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at $0.40 \AA$ from H1W and the deepest hole is located at $0.35 \AA$ from H1W.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Atoms with suffix A were generated by symmetry code 1-x, 1-y, 1-z.

Fig. 2. The crystal packing of the title compound viewed approximately along the b axis, showing three dimensional network.

4-[(1E)-1-[(E)-2-[1-(4-hydroxyphenyl)ethylidene]hydrazin- 1-ylidene]ethyl]phenol

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=304.34$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=7.8522$ (1) \AA
$b=5.5151$ (1) \AA
$c=17.8918(3) \AA$
$\beta=108.536(1)^{\circ}$
$V=734.62(2) \AA^{3}$
$Z=2$
$F(000)=324$
$D_{\mathrm{x}}=1.376 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=377-379 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2129 reflections
$\theta=2.4-30.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, yellow
$0.35 \times 0.26 \times 0.22 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.966, T_{\text {max }}=0.979$
8010 measured reflections
2129 independent reflections
1903 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-10 \rightarrow 11$
$k=-7 \rightarrow 7$
$l=-24 \rightarrow 24$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.125$
$S=1.06$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.061 P)^{2}+0.4114 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

2129 reflections

101 parameters
0 restraints

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 120.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.97567(10)$	$0.63439(15)$	$0.90238(4)$	$0.01443(19)$
H1O1	1.0145	0.4971	0.9166	0.022^{*}
N1	$0.55899(11)$	$0.49760(17)$	$0.53887(5)$	$0.0144(2)$
C1	$0.64270(13)$	$0.65293(19)$	$0.66844(6)$	$0.0106(2)$
C2	$0.63628(14)$	$0.83658(19)$	$0.72163(6)$	$0.0131(2)$
H2A	0.5566	0.9650	0.7045	0.016^{*}
C3	$0.74735(14)$	$0.82980(19)$	$0.79977(6)$	$0.0137(2)$
H3A	0.7421	0.9534	0.8343	0.016^{*}
C4	$0.86615(13)$	$0.63756(19)$	$0.82596(6)$	$0.0111(2)$
C5	$0.87307(13)$	$0.45094(19)$	$0.77420(6)$	$0.0126(2)$
H5A	0.9515	0.3215	0.7918	0.015^{*}
C6	$0.76265(13)$	$0.45958(19)$	$0.69653(6)$	$0.0123(2)$
H6A	0.7680	0.3350	0.6623	0.015^{*}
C7	$0.52532(13)$	$0.65863(19)$	$0.58524(6)$	$0.0113(2)$
C8	$0.37991(14)$	$0.8466(2)$	$0.56043(6)$	$0.0160(2)$
H8A	0.4326	1.0054	0.5696	0.024^{*}
H8B	0.2989	0.8269	0.5904	0.024^{*}
H8C	0.3152	0.8278	0.5054	0.024^{*}
O1W	$0.07930(12)$	$0.31062(17)$	$0.45773(6)$	$0.0252(2)$
H1W	0.0793	0.3113	0.5058	0.038^{*}
H2W	0.1722	0.3860	0.4541	0.038^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0167(4)$	$0.0153(4)$	$0.0088(3)$	$0.0003(3)$	$0.0007(3)$	$0.0002(3)$
N1	$0.0136(4)$	$0.0180(5)$	$0.0093(4)$	$0.0038(3)$	$0.0002(3)$	$-0.0019(3)$

C1	$0.0106(4)$	$0.0118(5)$	$0.0093(4)$	$-0.0001(3)$	$0.0029(3)$	$-0.0004(3)$
C2	$0.0145(4)$	$0.0122(5)$	$0.0121(4)$	$0.0025(4)$	$0.0034(4)$	$-0.0005(3)$
C3	$0.0163(5)$	$0.0125(5)$	$0.0120(4)$	$0.0007(4)$	$0.0041(4)$	$-0.0025(3)$
C4	$0.0114(4)$	$0.0131(5)$	$0.0087(4)$	$-0.0023(3)$	$0.0030(3)$	$-0.0001(3)$
C5	$0.0132(4)$	$0.0125(5)$	$0.0116(4)$	$0.0026(3)$	$0.0033(3)$	$0.0004(3)$
C6	$0.0141(4)$	$0.0121(5)$	$0.0106(4)$	$0.0013(3)$	$0.0039(3)$	$-0.0017(3)$
C7	$0.0103(4)$	$0.0131(5)$	$0.0102(4)$	$0.0005(3)$	$0.0028(3)$	$0.0006(3)$
C8	$0.0164(5)$	$0.0166(5)$	$0.0128(5)$	$0.0059(4)$	$0.0016(4)$	$-0.0010(4)$
O1W	$0.0194(4)$	$0.0227(5)$	$0.0337(5)$	$-0.0016(3)$	$0.0089(4)$	$0.0060(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 4$	$1.3644(11)$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1$	0.8256
$\mathrm{~N} 1-\mathrm{C} 7$	$1.2985(13)$
$\mathrm{N} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.4050(16)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.4016(14)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.4056(14)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.4814(13)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.3934(13)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.3913(14)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1$	111.9
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 1$	$114.55(10)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$118.04(9)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$121.45(9)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$120.50(9)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.04(9)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.82(9)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$119.26(9)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$120.65(9)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.09(9)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.72(9)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.95(16)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.93(9)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.37(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$179.26(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.48(16)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.72(15(16)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	
S	

Symmetry codes: (i) $-x+1,-y+1,-z+1$.

C4-C5	1.3971 (14)
C5-C6	1.3854 (13)
C5-H5A	0.9300
C6-H6A	0.9300
C7- 88	1.5010 (14)
C8-H8A	0.9600
C8-H8B	0.9600
C8-H8C	0.9600
O1W-H1W	0.8598
O1W-H2W	0.8601
C6-C5-H5A	120.1
C4-C5-H5A	120.1
C5-C6-C1	121.28 (9)
C5-C6-H6A	119.4
C1-C6-H6A	119.4
N1-C7-C1	116.07 (9)
N1-C7-C8	125.01 (9)
C1-C7-C8	118.92 (9)
C7-C8-H8A	109.5
C7-C8- H 8 B	109.5
H8A-C8-H8B	109.5
C7-C8- H 8 C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
H1W-O1W-H2W	110.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-0.70 (15)
C7-C1-C6-C5	-179.83 (9)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	177.76 (10)
N1 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	-2.78 (17)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	171.18 (10)
C6-C1-C7-N1	-9.72 (14)
C2-C1-C7-C8	-8.31 (15)
C6-C1-C7-C8	170.78 (10)

sup-4

supplementary materials

Hydrogen-bond geometry (A, ${ }^{\circ}$)
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D-\mathrm{H} \cdots \mathrm{A}$	D - H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1—H1O1 \cdots O1W ${ }^{\text {ii }}$	0.83	1.86	2.6747 (12)	171
O1W—H1W \cdots O1 ${ }^{\text {iii }}$	0.86	2.07	2.8429 (12)	149
O1W-H2W $\cdots \mathrm{N} 1^{\text {i }}$	0.86	2.17	3.0132 (14)	166
C5-H5A \cdots Cg1 ${ }^{\text {iv }}$	0.93	2.80	3.5046 (12)	134

supplementary materials

Fig. 1

Fig. 2

[^0]: \ddagger Thomson Reuters ResearcherID: A-5085-2009.
 § Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

